Single crystalline BaTiO3 thin films synthesized using ion implantation induced layer transfer
نویسندگان
چکیده
Layer transfer of BaTiO3 thin films onto silicon-based substrates has been investigated. Hydrogen and helium ions were co-implanted to facilitate ion-implantation-induced layer transfer of films from BaTiO3 single crystals. From thermodynamic equilibrium calculations, we suggest that the dominant species during cavity nucleation and growth are H2, H +, H2O, Ba 2+ and Ba–OH, and that the addition of hydrogen to the Ba–Ti–O system can effectively suppress volatile oxide formation during layer transfer and subsequent annealing. After ion implantation, BaTiO3 layers contain microstructural defects and hydrogen precipitates in the lattice, but after layer transfer, the single crystal is found to be stoichiometric. Using direct wafer bonding and layer splitting, single crystal BaTiO3 thin films were transferred onto amorphous Si3N4 and Pt substrates. Micro-Raman spectroscopy indicated that the density of defects generated by ion implantation in BaTiO3 can be significantly reduced during post-transfer annealing, returning the transferred layer to its single crystal state. Characterization using piezoresponse force microscopy shows that the layer transferred thin films are ferroelectric, with domain structures and piezoresponse characteristics similar to that of bulk crystals. © 2007 American Institute of Physics. DOI: 10.1063/1.2786915
منابع مشابه
Single-Crystalline Ferroelectric Thin Films by Ion Implantation and Direct Wafer Bonding
Layer splitting by helium and/or hydrogen implantation and wafer bonding was applied to transfer thin single-crystalline ferroelectric layers onto different substrates. The optimum conditions for achieving blistering/splitting after post-implantation annealing were experimentally obtained for LiNbO3, LaAlO3, SrTiO3 single crystals and PLZT ceramic. Under certain implantation conditions large ar...
متن کاملNanomechanical characterization of cavity growth and rupture in hydrogen-implanted single-crystal BaTiO3
A thermodynamic model of cavity nucleation and growth in ion-implanted single-crystal BaTiO3 layer is proposed, and cavity formation is related to the measured mechanical properties to better understand hydrogen implantation-induced layer transfer processes for ferroelectric thin films. The critical radius for cavity nucleation was determined experimentally from blistering experiments performed...
متن کاملCompeting failure mechanisms in thin films: Application to layer transfer
We investigate the origin of transverse cracks often observed in thin films obtained by the layer transfer technique. During this process, two crystals bonded to each other containing a weak plane produced by ion implantation are heated to let a thin layer of one of the material on the other. The level of stress imposed on the film during the heating phase due to the mismatch of thermal expansi...
متن کاملPreferentially oriented BaTiO3 thin films deposited on silicon with thin intermediate buffer layers
Barium titanate (BaTiO3) thin films are prepared by conventional 2-methoxy ethanol-based chemical solution deposition. We report highly c-axis-oriented BaTiO3 thin films grown on silicon substrates, coated with a lanthanum oxynitrate buffer layer of 8.9 nm. The influence of the intermediate buffer layer on the crystallization of BaTiO3 film is investigated. The annealing temperature and buffer ...
متن کاملAnalysis of Competing Failure Mechanisms in Layer Transferred Thin Films
In this chapter, we develop the criterion for successful layer transfer from a thin film mechanics standpoint. To insure proper thin film exfoliation, samples of lithium niobate were implanted with hydrogen and helium based on the criterion developed in Chapter 3. The analysis of transverse cracks, often observed in thin films obtained by the layer transfer technique, is done for films in a sta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007